
© 2009 The Aerospace Corporation

Software Schedules:
Nailing Jello to the Wall

NASA Project Management Challenge 2009

Marghi Hopkins

2
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Why Are We Having This Conversation?
Software schedules - still risky after all these years

• Notwithstanding years of
– Lessons learned
– Process improvement
– Metrics

• We still routinely face
– Large uncertainties in schedule

estimation
– Problematic schedule tracking

• Is there any help?

3
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Presentation Topics
Related to software and schedules

• Effects and trends in software
scheduling

• The system development lifecycle
• The software subsystem
• Symptoms and causes of scheduling

problems
• Several approaches to developing

and maintaining accurate software
schedules

4
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Twenty Years And 40+ Missions:
Summary Of Cost/Schedule Study Results*

Effects of scheduling overruns
• 10% schedule growth corresponds to 12% cost growth
• Assumptions and allotments for schedule growth

– General rule of thumb is 1 month per year
– NASA/JPL guidance is 1.8 months per year
– Four of six telescope missions exceeded NASA/JPL guidance
– Five of six telescope missions exceeded general rule of thumb

• Reliability of estimates improves over the life cycle but still
contains large uncertainty

• Greatest growth occurs in Phase D during Integration and Test
• Short schedules and increased complexity invite failure

– Failed and impaired missions had short schedules or a combination of
short schedules and high complexity

*Bearden, Perspectives on NASA Mission Cost and Schedule Performance Trends, Presentation
at GSFC Symposium, 3 June 2008 [http://ses.gsfc.nasa.gov/SE_Seminar_2008.htm]

5
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Trends: More Complex, More Complicated

• Complex
– 1 : composed of two or more parts
– 2 : difficult to analyze, understand, or explain

• Complicated
– 1 : consisting of parts intricately combined
– 2: hard to separate, analyze, or solve

• Classical Systems Engineering assumes a closed
system: decomposable, linear, predictable

• Newer problems tend to reside in open systems that
exhibit predictable patterns of behavior, unpredictable
patterns of behavior, or a combination of both

6
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

The Big Picture
The system development lifecycle

SRR PDR TRRCDR

System
Requirements

System
Architecture

System
Detailed Design

System
Implementation

System
Integration
and Testing

System
Qualification

Testing

SIR

SRR – System Requirements Review
PDR – Preliminary Design Review
CDR – Critical Design Review
SIR – System Integration Review
TRR – Test Readiness Review

7
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

The Section On Which We Are Focused
The software subsystem

SRR PDR TRRCDR

System
Requirements

System
Architecture

System
Detailed Design

System
Implementation

System
Integration
and Testing

System
Qualification

Testing

Hardware Subsystem

Software Subsystem

Software
Requirements

Analysis

Software Design

Architecture Software
Implementation Integration

and Test
Software

Qualification
Testing

Detailed

SRR PDR CDR

SIR

TRR
SIR

8
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Looking Closer
The software subsystem

System PDR

System Detailed Design System Implementation

System CDR

Software
Requirements

Analysis

Software Design

Architecture Software
Implementation Integration

And Test
Software

Qualification
Testing

Detailed

SRR PDR CDR
TRR

SIR

System SIR

9
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Establishing A Schedule And Milestones
The software subsystem

Acceptance

System
PDR

PDR CDRSRR SIR TRR

10
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Tracking The Schedule
The software subsystem

In a perfect world:

In our world:

Acceptance

Acceptance

PROGRESS

System
PDR

PDR CDRSRR SIR TRR

System
PDR

PDR CDRSRR SIR TRR

ΠΡΟΓΡΕΣΣ

11
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Typical Software Scheduling And Tracking
Problems

• The software schedule seems reasonable but keeps
changing

– The project keeps receiving new requirements
– Coding is finished, but integration and test is taking more time

than expected

• The software schedule is not reasonable and keeps
slipping

– COTS and reused code didn’t reduce the schedule as much
as predicted

• Tracking the schedule is difficult
– The code is 90% done
– The software status hasn’t changed since the last reporting

period

12
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Software Scheduling And Tracking Problems
Well-known causes

• Poor estimates,
– Ill-defined requirements
– Changing requirements
– Failure to understand the problem
– Inexperienced team
– Lack of metrics
– Poor or inappropriate use of metrics
– Lack of review by technical people

• Poor tracking
– No tracking is done
– Inaccurate status of tasks
– Overly optimistic
– Improper use of Earned Value Measurement

13
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Software Scheduling And Tracking Problems
Less well-recognized causes

• The software schedule is not properly synchronized
with the system schedule

– A software schedule cannot realistically begin until after the
System Preliminary Design Review (PDR), when the Review
Board approves allocation of functionality to hardware and
software systems

– Starting the software schedule before System PDR generally
results in slips, rework, and rescheduling

• Failure to include the requirements-design-implement-
test cycle at even the lowest levels, including bug fixes
and requested changes

14
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Software Scheduling And Tracking Problems
Personal Experiences

• Inadequate or no time in the schedule for the
requirements-design-implement-test cycle, especially
during integration and test

– Little or no unit testing was done
– Bugs were not correctly fixed or new bugs were installed

because requirements and design were not reviewed

• Forward progress reverses when problems must be
fixed, but tracking does not include options for
accurately conveying project status

– No consideration of “are we going in the right direction?”
– When 100 lines of code are counted as complete, does

anybody ever subtract that 100 lines when the module fails in
integration? No.

15
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Using Technology To Enhance Project
Scheduling
Several Examples

• Evidence Based Scheduling* to get a confidence distribution curve
showing you will meet the target completion date

– Maximum 16 hour tasks – this forces you to do the detailed design
– Capture individual project member’s elapsed time for each task
– Calculate estimate/actual ratios to determine how fast the task was

done relative to the estimate; perform a Monte Carlo simulation for
each project member using data from the past 6 months

– Calculate each project member’s probability of completing assigned
tasks on a given date; the developer who finishes last determines
when the team is done

• Using this approach produces a realistic project schedule

*Spolsky, Evidence Based Scheduling, Article on the Joel on Software Homepage, 26
October 2007 [http://www.joelonsoftware.com]

16
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Benefits Of Evidence Based Scheduling

• Significantly enhanced accuracy
• Empirical evidence that allows you to understand

project status in concrete terms
• Real-time performance data that forces you to prioritize

and help control scope creep
– Given a bunch of blocks and a box that won’t hold them, you

must get a bigger box or discard some of the blocks.

• Realistic schedules that permit active project
management to meet milestones, not just post-mortem
analysis

• Once procedures are set up, they can be quickly and
easily deployed in later phases or other projects

17
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Non-Technological Enhancements To Project
Scheduling
Several Examples
• Track progress using something other than, or in

addition to, lines of code
– Number of requirements met
– Number of Function Points implemented
– Number of test cases successfully executed
– Number of Use Cases that can be executed in a build

• Not difficult to calculate
• Use Cases are almost universally used now for requirements

analysis and design, so you use existing information
• Helps enforce using the requirements-design-implementation-test

cycle at all levels: system, CSCI, CSC, and unit

• Functional, rather than quantitative status reports
provide a more reliable view of progress than the sum of
number of lines of code generated

18
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

In Summary

• The software schedule should begin after system PDR,
not before

• Provide sufficient time for the requirements-design-
implement-test cycle at all levels

• Project Management should include metrics that
provide a realistic view of project status

– Functional milestones, not amount of code
– Current loads on all team members—and disparities between

them
– Specific identification of open issues and cost overruns
– Dynamic timelines that show the impact of a slipped schedule

